Microprocessor 10-25 Keyboard and Display Interfacing

Encoded scan : In the encoded scan, scan lines (SL 2-SL) are decoded externally to
provide 8 scan lines. We know that 8279 provides 8 returns lines. Therefore, the maximum
size of keyboard matrix is 8x8 = 64. When the key is pressed, 8279 stores the encoded
status of scan lines and return lines along with the status of SHIFT and CNTL/STB keys
into the FIFO RAM, as shown in the Fig. 10.18.

B, Bg Bs By By B, B By
| oNTL | sHIFT | SCAN RETURN B

Fig. 10.18 Scanned keyboard data format

CNTL is the MSB of the character and shift is the next most significant bit. The next
three bits are from the scan counter. The last three bits indicate to which return line the
key is connected. With this 8-bit key code 8279 can recognize 256 (28) different characters.

mmp Example 10.3 : Find the key code for condition given below : CNTL/STB SHIFT keys
are open.The pressed key is connected to scan line 2 and return line 4.

Solution :
B; Bg Bs By By B, By B
1]1]0)1110]1}|0f0
CNTL = 1
SHIFT = 1
Scan Code = 01 0 (scan line 2)
Return Code = 10 0 (return line 4)

D4H

Key code

Decoded scan :

In the decoded mode, the internal decoder decodes the least significant 2-bits of scan
lines internally to provide four possible combinations on the scan lines (SC3 - 8Cy) : 1110,
1101, 1011 and 0111. Therefore maximum size of keyboard matrix is 8x4 = 32. In this
mode, keycode is generated in similar way as in the encoded mode, only bit 5 of keycode
is always 0. Therefore, 8279 can recognize only 128 (27) characters.

The scanned keyboard mode allows key depressions in 2-key lockout or N-key rollover
mode with key debounce.

2-key lockout : In this mode, simultaneous key depression is not allowed. When any
key is depressed, the debounce logic is set and 8279 checks for any other key depress

Microprocessor 10-26 Keyboard and Display Interfacing

during next two scans. Now we will see how this mode reacts with three possible
conditions that can occur during debounce scanning.

Conditiun 1 : If other key depress not found during next two scans, it is a single key
depression and the key code is entered into FIFO RAM along with the status of CNTL and
SHIFT lines. If the FIFO was empty, IRQ will be set to signal the CPU that there is an
entry in the FIFO RAM. If the FIFO RAM was full, the key will not be entered and the
errc: fiag will be set.

Condition 2 : If another key depress is encountered, no entry to the FIFO can occur. If *
all other keys are released before first one, then it will be entered to the FIFO. If first key
is released before any other, it will be entirely ignored.

Condition 3 : If two keys are depressed within the debounce cycle, it is a simultaneous
depression. Neither key will be recognized until one key remains depressed alone. The last
key will be treated as a single key depression.

N-Key rollover : In N-Key rollover, each key depression is treated independently from
all others. When a key is depressed, the debounce logic is set and 8279 checks for key
depress during next two scans. Now we will see how this mode reacts with three possible
conditions that can occur during debounce scanning.

Condition 1 : If key is still pressed then key is entered into the FIFO.
Condition 2 : If other keys are pressed, they are recognized and entered into the FIFO.

Condition 3 : If a simultaneous depression occurs, the keys are recognized and entered
according to the keyboard scan found them.

Scanned sensor matrix : In the sensor matrix mode, image of the sensor matrix is kept
in the sensor RAM. The status of the sensor switches are input directly to the sensor RAM.
8279 scans rows one by one and stores the status of each row in the corresponding
location in the sensor RAM. For example, when 8279 scans first row of sensor matrix it
stores the status of first row in the location 0 of the sensor RAM. At the end of sensor
matrix scan if any sensor value change is detected then 8279 sets ‘S’ bit in the status
register and activates the IRQ signal. In the autoincrement mode, the IRQ line is cleared by
issuing End of Interrupt command, otherwise it is cleared by the first data read operation.
When multiple changes in the sensor matrix occurs, multiple interrupts are generated. In
sensor matrix mode, the debounce logic is inhibited. Although it is inhibited, sensor matrix
mode has the advantage that CPU knows how long the sensor was closed and when it
was released. The scanned keyboard mode can only indicate validated key closure. In
encoded mode, size of sensor matrix is 8x8 whereas in decoded mode size of sensor
matrix is 8 x 4. In both the modes CNTL and SHIFT lines are ignored.

Strobed input mode

In the strobed input mode, data is entered to the FIFO RAM from the returned lines.
The data is entered at the rising edge of the CNTL/STB signal.

Microprocessoi

10-27 Keyboard and Display Interfacing

10.5.4.2 Display Modes
The 8279 provides 2 basic output modes
* Left entry (Typewriter type)
* Right entry (Calculator type)

Left Entry

In the left entry mode, 8279 displays characters from left to right in the multiplexed
displays like a typewriter. In this, each display position is directly corresponds to a byte
(or nibble) in the display RAM. Address 0 in the RAM is the left-most display character
and address 15 (or address 7 in 8-character display) is the right most display character, as

shown in the Fig. 10.19.

Display RAM

Address

(b) 16-character display left entry mode

Fig. 10.19

Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7

0000 0001 0010 0011 0100 0101 0110 0111
(a) 8-character display left entry mode

Digit 0 Digit 1 Digit 2 Digit 13 Digit 14 Digit 15

0000 0001 0010 1101 1110 1111

Entermg characters from possible zero causes the display to fill from the left. The 179
O™ in case 8 character display) character is entered back in the left most position and
filling again proceeds from there, as shown in the Fig. 10.20. The characters can be
displayed on the specific digit by loading character code in the corresponding location in
the display RAM.

Microprocessor 10-28 Keyboard and Display Interfacing

© (1 (14) (15 pisplay
g0 0OOT 1110 1111 RAM
st Address
1 Entry | 1
© ™ (14) (15)
veoo Q001 1110 1111
d
2" Entry | 1| 2

@ (14) (15)

o0 0OOT 1110 1111
16 Enty | 1] 2 15 | 16
© 0 (14) (15)
o000 0001 1110 1111
17" Entry | 17| 2 15 | 16
@ () (14) (15)
o000001 1110 1111
18" Entry | 17 | 18 15 | 16

Fig. 10.20 16-characters left entry mode
Autoincrement in Left Entry

In left entry mode, if autoincrement flag is set to 1 after each write operation display
RAM address is incremented by one so that it will point the next location in the display
RAM. This autoincrement facility allows user to load display RAM in a sequential manner,
and it is not necessary to specify display RAM address for each write operation.

Right Entry

In the right entry mode, 8279 displays characters from right to left in the multiplexed
display like a calculator. The first entry is displayed on the right most display. The next
entry is also displayed on the right most display after the display is shifted left one
character, as shown in the Fig. 10.21.

Microprocessor 10-29 Keyboard and Display Interfacing

1 (14) (15) (0)
ootoot0 1110 1111 0000
st
1 Entry 1
2 3 (15 () (1)
gotooott 1111 0000 0001
2"°Enuy 1] 2
3 @ 0 1 2
o110 €000 0001 0010
3rdEm,y 1 2 3
@ (13) (14) (15)
000000t 1101 1110 1111
16"Emy 112 14115 | 16
M @ (14) (15) (0)
ooo100t0 1110 1111 0000
17"emy| 2|3 15 | 16 | 17
2 @ (15) (0 (1)
oot00014 11110000 0001
18mEntry 314 6] 17] 18

Fig. 10.21 16-characters right entry mode with autoincrement

When new character is entered, it shifts all previous characters left by one position and
displays new entry on the right most display.

Autoincrement in Right Entry

In the right entry mode, autoincrementing and non-autoincrementing have the same
effect as in the left entry except if the address sequence is changed. Some examples with
changed address sequence.

First character is displayed on the right most digit of the display. After second entry
first character is shifted left and second character is displayed on the right most digit of
the display. In the third entry, address of display RAM is changed to 5, displaying the
third character at fifth digit after shifting the previous characters 1 digit left. In the 4
Entry the new character is displayed at 5th digit after shifting all previous characters 1
digit left, and this sequence is continued. (Fig. 10.22 see on next page).

Microprocessor 10 - 30 Keyboard and Display Interfacing

Display RAM

st
1 Enty 1 Address

nd
2 Entry 1 2

d
3 Entry 3 1 2
at location
5

th
4 Entry 314 1 2

th.
5 Entry 3} 451 1] 2] 3

Fig. 10.22 8-characters right entry with autoincrement
10.5.5 8279 Commands
In the last sections we have seen vari. :ts operating modes of 8279. To program 8279 in
the desired mode it provides eight command words. The command words are sent on the
data bus with CS low and A, high and are loaded to the 8279 on the rising edge of WR.
8279 differentiate these commands by checking 3 most significant bits of the command
word.

10.5.5.1 Keyboard/Display Mode Set Command (000)

This command is used to program operating modes of keyboard and display. Three
least significant bits decide the keyboard mode and next two bits decide the display mode,
as shown in the tables.

Command word format

Fig. 10.23 Keyboard/display command word format

Microprocessor 10 -31 Keyboard and Display Interfacing

K| KI! K Keyboard modes
0 0 0 Encoded Scan Keyboard-2 key lockout
0 0 1 Decoded Scan Keyboard-2 key lockout
0 1 0 Encoded Scan Keyboard-N key rollover
0 1 1 Decoded Scan Keyboard-N key rollover
1 0 0 Encoded Scan Sensor Matrix
1 0 1 Decoded Scan Sensor Matrix
1 1 0 Strobed Input, Encoded Display Scan
1 1 1 Strobed Input, Decoded Display Scan
Table 10.5 Keyboard modes

D D Display modes

0 8 8-bit character display - Left Entry

0 1 16 8-bit character display - Left Entry

1 0 8 8-bit character display - Right Entry

1 1 16 8-bit character display - Right Entry

Table 10.6 Display modes

' Example 10.4 : Give the command word to set keyboard/Display mode for the following
configuraton.
Encoded scan keyboard - N key rollover
16 8-bit character display - Right Entry.

Solution : Command word
0 0 0 D D K K K

[ofJoJol1T1To 1 0] =1an

nmp Example 10.5 : The microprocessor system has a configuration given below. Find the
keyboard/display command word.
8x 4 matrix keyboard - 2 key lockout
4 Digit 7-segment display left entry.
Solution : The system has 8 x 4 matrix keyboard and 4 digit display. Hence, only 4 scan
lines are sufficient. The decoded mode of 8279 provides 4 scan lines directly and these
lines can be used directly to interface 8x 4 matrix keyboard and 4 digit display without
external decoder. Therefore, we should select keyboard and display modes as:

Keyboard mode : Decoded scan keyboard - 2 key lockout
Display mode : 8-bit character display left entry

Command word :

0 o0 o D D K K K
Lo|o|o|o|o|o|o|11=o1H

Microprocessor 10 - 32 Keyboard and Display Interfacing

10.5.5.2 Program Clock Command (001)

All timing and multiplexing signals for the 8279 are generated by an internal prescaler.
This prescaler divides the external clock by a programmable integer value given in the
program clock command word, to generate internal frequency Fig. 10.24 shows format for
program clock command word.

Bg Bg By By B By

S I I B A B

Fig. 10.24 Program clock command word format

Bits PPPPP determine the value of this integer which ranges from 2 to 31. To give
proper scan and key debounce times the internal frequency should be 100 kHz. Therefore,
prescaler integer value should be selected to get 100 kHz internal frequency.

Extemnal clock

Prescaler value = 100 iz

mmp Example 10.6 : Find the program clock command word if external clock frequency is

2 MHz.
Solution :
106
Prescaler value = 2107 20 = (10100),
100x 103

-, Command word

(00110100), = M4H

10.5.5.3 Read FIFO/Sensor RAM Command (010)

To read data from FIFO/sensor RAM, it is necessary to set 8279 in read FIFO/sensor
RAM mode. Read FIFO/sensor RAM command is used for this purpose Fig. 10.25 shows
the format for Read FIFO/Sensor RAM command.

By Bg Bs By Ba B, By

0 1 0 Al X A A A

Fig. 10.25 Read FIFO/sensor RAM command word format

Here, three least significant bits, (AAA) specify the address of the sensor RAM and
bit By, if 1 enables autoincrement mode. In the scan keyboard mode, the autoincrement
flag (AD) and the FIFO RAM address bits (AAA) are irrelevant. In this mode, 8279
provides data for each subsequent read in the same sequence in which the data first
entered in the FIFO RAM.

Microprocessor 10-33 Keyboard and Display Interfacing

In the sensor matrix mode, the sensor RAM address bits AAA select one of the § rows
of the sensor RAM. If the autoincrement flag is set (Al = 1), each successive read will be
from the subsequent row of the sensor RAM.

mmp Example 10.7 : Write a command word to read data from FIFO RAM.

Solution : We know that, in scan keyboard mode, the autoincrement flag (AI) and the
FIFO RAM address bits (AAA) are irrelevant. Therefore, commard word to read data from
FIFO RAM is as given below.

Al

0 1 0 X X X X X = 40H

Note : X = Don’t care. Taking don't cares equal to zeros we get command word to
read data from FIFO RAM is 40H.

nmp Example 10.8 : Write a command word to read third location with autoincrement of the
sensor RAM in sensor matrix mode.

Solution : Command word :

Al A A A

0 1 0 1 X 0 1 1 = 53H

10.5.5.4 Read Display RAM Command (011)

To read data from display RAM, it is necessary to set 8279 in read - display RAM
mode. Read display RAM command is used for this purpose. Fig. 10.26 shows the format
for Read Display RAM command

37 Ba Bs B4 83 Bz B1 Bo

0 1 1 Al A A A A

Fig. 10.26 Read display RAM command word format

Here, four least significant bits (AAAA) specify the address of the 16 byte display
RAM and bit By, if 1, enables autoincrement mode. If the bit B, (Al) is set, display RAM
address is incremented after each read command to display RAM.

nmp Example 10.9 : Write a command word to read fourth location with autoincrement of the
display RAM.
Solution : Command word
Al A A
0 1 1 1 0 1 0 0 = T4H

Microprocessor 10 - 34 Keyboard and Display Interfacing

10.5.5.5 Write Display RAM Command (100)

To write data into display RAM, it is necessary to set 8279 in write display RAM
mode. Write display RAM command is used for this purpose. Fig. 10.27 shows the format
for write Display RAM command.

B B B By By B By B
1 [oo a|l Al a]la]al

Fig. 10.27 Write display RAM command word format

Here, four least significant bits (AAAA) specify the address of the 16 byte display
RAM and bit B,, if 1, enables autoincrement mode. If the bit B, (Al) is set, display RAM
address is incremented after each write command to display RAM.

mmp Example 10.10 : Write a command word to write fifth location without autoincrement of
the display RAM.

Solution : Command word

AN A A A A
[1+] ol o ol of 1] of 1 |=8sn

10.5.5.6 Display Write Inhibit/Blanking Command (101)

We know that, display RAM data is sent on the two 4-bit ports (B;-B, and A ;-A).
This two 4-bit ports can be individually inhibited or blanked with display write
inhibit/blanking command. Fig. 10.28 shows the format for display write Inhibit/Blanking
Command

B B B By By By By B

1 0 1 X W iw BL BL
A B A B

Fig. 10.28 Display write Inhibit/Blanking command word format

The IW bits are used to mask nibble A (4-bit port A) and nibble B (4-bit port B) in
applications requiring separate 4-bit display ports. By setting the IW flag (I/W = 1) for one
of the ports, the port can be masked so that entries to the display RAM from the CPU
donot affect other port.

The BL bits are used to blank the individual nibbles. This command loads the blank
code (All zeros, 20H, or All ones) determined by the last issued clear command, in the
display RAM to blank the display.

Note : After reset blank code is set to all zeros.

Microprocessor 10-35 Keyboard and Display Interfacing

mmp Example 10.11: Write a command word to inhibit nibble A of the display.

Solution : Command word

W W BL BL
A B A B
Lol ol i+ T xT v T o] o] o |=nem

10.5.5.7 Clear Command (110)

Clear command is used to clear all the rows of the display RAM with a selectable
blanking code, to clear status of FIFO RAM and to reset interrupt output line. Fig. 10.29
shows the format of display command.

1 1 0 | cp,|cp |cp,| cF | ca

Fig. 10.29 Clear command word format
CD bits (CD,-CD) are used to select the blanking code as given below.

Cb, CD, Blanking code
o X All Zeros (for common cathode displays)
1 0 20H (for alphanumeric displays)
1 1 All ones (for common anode displays)

Bit CD,, when set to one, enables clear display

Bit CF, when set to one, clears the status of the FIFO, resets the interrupt output line
and sets the sensor RAM address to 000.

CA, the clear all bit, has the combined effect of CD and CF; it uses the CD clearing
code on the displays RAM and also clears FIFO status. It also resynchronizes the internal
timing chain.
nmp Example 10.12 : Write a command word to set blanking code for common anode display

and to clear the FIFO status. _ : ,
Solution : Blanking code for common anode display is all ones and which can be set by
writing CD; =1 and CD, . '

CD, CD, CD, CF CA
Lrlr]Jol v+ +T 1T+ o] =oen
OR
D, CD, CD, CF CA
[x |

T o x]

| =coH

Microprocessor 10-36 Keyboard and Display Interfacing

10.5.5.8 End interrupt/Error Mode Set Command (111)

In the sensor matrix mode, if any change in sensor value is detected, IRQ line goes
high at the end of a sensor matrix scan. The IRQ line is cleared by the first data read
operation if the autoincrement flag is set to zero. But if autoincrement flag is set to one
then it is necessary to issue End Interrupt Command to clear the IRQ line. Fig. 10.30
shows the format for End interrupt/Error mode set command.

Bg Bs By Bz By By By

—t——

T T+l x[x[x[x]

Fig. 10.30 End interrupt/Error mode set command word format

For the N key rollover mode, if the E bit is programmed to '1‘,v' the 8279 will operate
in the Special Error Mode. In the special error mode, if two keys are depressed during
single debounce, the error flag in the FIFO status word is set.

mmp Example 10.13 : Write a command word to clear IRQ line in a sensor matrix mode.

Solution : Command word :
E

P [+ [+ [x [x [x] x| x |=coH

Note : Status of Ebitcanbe O or 1

FIFO STATUS REGISTER

It is used in the keyboard and strobed input modes to indicate the number of
characters in the FIFO and to indicate whether an error has occurred. Fig. 10.31 shows the
format of FIFO status word.

As shown in the Fig. 10.31, there are two types of possible errors : Overrun and
underrun. Overrun error occurs when the entry of another character into a full FIFO is
attempted. Underrun occurs when the CPU tries to read an empty FIFO.

B7 Be 35 B4 BS Bz B1 BO

DU | SE 0 U F N N N

|___Indicates number
of characters in FIFO

— FIFO full

Error underrun

Error overrun

Sensor closure / Error flag for muitiple closures
Display unavaiiable

Fig. 10.31 FIFO status word

Microprocessor 10-37 Keyboard and Display intsrfacing

During clear display or clear all command, display RAM is not available for user. This
is indicated DU bit in the FIFO status register.

In the sensor matrix mode, a S/E bit is set in the FIFO status word to indicate that
atleast one sensor closure indication is contained in the sensor RAM.

Inthespecialerrornwde,aS/EbitissetintheFIFOshmswordboindimheth;nta
simultaneous multiple closure error has occurred.

10.5.6 Interfacing 8279 in /O Mapped I/0

Fig. 10.32 shows the interfacing of 8279 with 8086 in I/O mapped 1/0 technique. Here
RD and WR signals are activated when M/IO signal is low, indicating I/O bus cycle.
Reset out signal from 8086 system is connected to the Reset signal of the 8279. CLK input
of 8279 is driven from the clock signal of 8086 system. A; signal from the 8086 is
connected to the Ag input of 8279. The chip select signal, CS is generated using decoding
circuit. Interrupt signal from the 8279 is connected to the interrupt input of 8086.

Dy : |D° SHIFT fo——
b7 07 CNTLfe—
Ar Ao Ry C:] Retumn lines
7

',‘ TOR—=o RD

J

. BD | Blank display
ICW ——=q WR

Sy _-—__->
‘ Scan lines
RESET RESET S

Ao
CLOCK CLK Py m— Display
To 8086 Interrupt INT B> lines

P

©~NN
@
O

Fig. 10.32 Interfacing of 8279 in /O mapped 1/O

Microprocessor o 10-38 Keyboard and Display interfacing

/O Map :

Data/Control Address lines Address
Register

A13|A12|A11[A10] A | Ag | A7 | A6 [As | A4 | Aa | Az [Aq | Ag| Address
Data Register [0 [0 [0 |o|o|o|lofojofojo|o]ojofojo]| OOH

Control Register} 0 f 0 f0of0o}o|0|lOf[OjOofOfOfO}jO]O]|1]0O 02H

2z
L3
e
F-N

10.5.7 Interfacing 8279 in Memory Mapped 1/O

Fig. 10.33 shows the interfacing of 8279 with 8086 in memory mapped I/O technique.
Here, RD and WR signals are activated when M/ 1O signal is high, indicating memory bus
cycle. To get absolute address, all remaining address lines (Ay-Ajg) are used to decode the
address for 8279. Other signal connections are same as in I/O mapped 1/O.

Ag —“D"
A —D‘*
Ay —‘DO-
As —Do—
s —o- e I
N Do A P Rbo C: Return lines
Am——Do- HEVR R s Z‘Z-——*al K displ
Aq; _ 2 ank display
t MEMW ——=d WR
A RESET RESET 79 gg :>Scan lines
A _,I>° —
;:_Do_} CLOCK ——] CLK D)
Display
Ag ——-Do- To 8086 Interrupt—-—T INT - gg :> lines
A7 —Do—
As ——Do—
As ——Do—
Ay —Do—
_D°'
_D°'

Fig. 10.33 Interfacing of 8279 in memory mapped l/O

Microprocessor i0-39 Keyboard and Display Interfacing
1/0 Map :

Data/

Control Address lines Address
Register

A19{A18/A17|A16/A15/A14/A13lA12/A11|A 10| Ag | As | A7 | Ag | A5 | A4 | A3 Aq |Ag| Address

Data 0j01]0 0 ojojofojotojojojolojo 0{0] OOH
Register

Control {0} 0|0 0 ojojojlojojlojotojojojo 110}] O02H
Register

10.5.8 Applications

In this section we will discuss many useful applications with different modes of
keyboard and display interfacing. In addition to this we are going to see the software
requirement to control the interfacing circuits. All these applications are illustrated using

different examples.

Program 30 : Hardware and software for 8 x 8 keyboard interface using 8279

Program statement :

1. Without interrupt signal

Interface an 8 x 8 matrix keyboard to 8086 through 8279 in 2-key
lockout mode and write an assembly language program to read keycode of the pressed
key. The external clock frequency is 2 MHz. Use I/O mapped 1/0 technique.

Solution : The 8 x 8 matrix keyboard can be interfaced to 8086 through 8279 in two ways.

2. With interrupt signal (Interrupt driven input)

We will see both the ways one by one.

1. Without interrupt signal

Hardware : Fig. 10.34 shows the interfacing of 8 x 8 matrix keyboard.

(See Fig. 10.34 on next page.)

1/0 Map
Data/Control Register Address lines Address
A7 As As Ay | A3 A AL A
Data Register 1 0 o] 0 0 (0] 0 o0 80 H
Control Register 1 0 0 0 0 0 1 0 82 H

Microprocessor 10 - 40 Keyboard and Display Interfacing

Scan lines
NS = X 2 2 3 2 5 | 5
g ¥ 2 2 3]] 2]
. N RL, 2 ¥ F| 2| F| P P P
N RLy PILE| P P\ F P P 8
BR—q® g, X 0 2 e e e e]
on—dwR ¥ 2 e e e e] ©
RESET OUT——] RESET RL. ;d },’o‘)>;d ;8 ;,’d }>;d ;8 ;d
CLK OUT———{ CLK RL, ;d go' %’d ;d %’d }’,cr ;a‘ ;d
8279 S Yo |
2:] cmm
A | ~—INT Ss|-)
SHIFT
Ao CNTL

Fig. 10.34 Interfacing of 8 x 8 matrix keyboard
Software :
Step 1 : Find keyboard/display command word. To interface 8 x 8 matrix keyboard we
need 8 scan lines and 8 return lines. To get 8 scan lines. We have to select encoded scan

keyboard mode. Therefore, the keyboard/display command word for above keyboard
configuration is given as follows :

0 0 0 D D K K K
0 0 0 X X 1 0 0 0 = 00H

Note : 000 - Encoded scan keyboard - 2 key lockout

X — don’t care

Step 2 : Find program clock command word

External clock frequency is 2 MHz

2MHz

Prescaler value = 100K

= 20 = (10100),

Microprocessor 10 - 41 Keyboard and Display Interfacing

Therefore, the program clock command word is as given below :
P P P P P
0 0 1 1 0 1 0 0 = 34H

Step 3 : Find Read FIFO/sensor RAM command word we want to read first entry from
the FIFO RAM. Therefore command word is as given below.

Al A A A
0 1 0 0 X 0 0 0 = 40H

Flowchart :

Start

Initialize keyboard /
display mode of 8279

!

Initialize prescaler
count

pr—

Read FIFO status
word

Is
no. of
characters
in FIFO =0

Yes

| ReadrForam |

MOV AL, O0OH

OUT 81H, AL ; Initialize keyboard/display
; in encoded scan keyboard-2 keylockout mode

Program :

MOV AL, 34H
OUT 81H, AL ; Initialize prescaler count
BACK : IN AL, 81lH ; Read FIFO status word

AND AL, O07H ; Mask bit B; to B,

JZ BACK ; If 0, key is not pressed wait for key
; -press
; otherwise read FIFO RAM

MOV AL, 40H ; Initialize 8279 in read

OUT 81H, AL ; FIFO RAM mode

IN AL, 80H ; Read FIFO RAM (keycode)

Microprocessor ‘ 10-42 Keyboard and Display Interfacing

2. With interrupt signal

Hardware :

Fig. 10.35 shows the interfacing of 8 x8 matrix keyboard in interrupt driven keyboard
mode.

o Yo Yo X o
e FE
D7 D7 RL, b I8 2 I I 2 M
g
_ _ RLy b2 2 28 I D D M
IOR—q RD RL, />°/d)}D’J 2.(&)>°’d />°/o’))o’d ;’«)):«‘
IOW——=q WR RLs));« ?.(o’)>.{o' ,>°/°()>;¢ 3’4{ %’«)}:J
RESET OUT RESET RL))D’o' ?.{&)>°’o' ch ?o’« ;’o’)>°’d ,>;o4
CLK OUT CLK RL, 20’« l>°’o')>°’o’ ;(o’ ;/o’ ;« }"o’ ?o’«
ToRST7.5 INT 8279
Ay g? S
A‘"’_D* %0
A5_>°- B Decoder
AA—‘D"" CS
A—] >0
A— >0

Fig. 10.35 Interfacing of 8x 8 matrix keyboard in interrupt driven keyboard mode

In the interrupt driven mode interrupt line from 8279 is connected to the INTR the
interrupt input of 8086.

Software : All the command words required to initialize 8279 are same as in the
noninterrupt mode.

Microprocessor 10 -43 Keyboard and Display Interfacing

Initialize keyboard / Initialize FIFO RAM
display mode of 8279

T !

Initialize prescaler count Enable interrupt

Enable interrupt

———]

Wait for the interrupt

I

Flowchart :

Fig. 10.36

Main program

MOV AL, O00H
OUT 82H,AL ; Initialize keyboard/display in encoded
; scan keyboard 2 key lockout mode
MOV AL, 34H
OUT 82H,AL ; Initialize prescaler count
HERE : JMP HERE ; Wait for the interrupt

Interrupt subroutine

MOV AL, 40H ; Initialize 8279 in read FIFO

OUT 82H, AL ; RAM mode

IN AL, 80H ; Read FIFO RAM (keycode)

RET ; Return to main program

In the interrupt driven keyboard, when key is pressed, key code is loaded into FIFO

RAM and interrupt is generated. This interrupt signal is used to tell CPU that there is a
keycode in the FIFO RAM. CPU then initiates read command with in the interrupt service
routine to read keycode from the FIFO RAM.
Program 31 : Hardware and software to interface 8x4 matrix keyboard using
8279

Program statement : Interface an 8 x 4 matrix keyboard to 8086 through 8279.

Solution : Fig. 10.37 shows interfacing of an 8 x 4 matrix keyboard to 8086 through 8279.
(See Fig. 10.37 on next page.)

As keyboard is having 8 rows and 4 columns, only 4 scan lines are required and we
can avoid external decoder to generate scan lines by selecting decoded scan keyboard
mode.

Microprocessor . 10-44 Keyboard and Display Interfacing

o M
07:>D7 RL, ﬂ & & ﬂ
Y N
S e | P ¥ F F
L, ¥ ¥ ¥ ¥
o L I
RESET QUT———f RESET AL ¥ ¥ El_zd
CLK OUT. CLK RL, Ef ;8 p
INTR=——] INT s,
S
Q
A S5
A;—‘ SHIFT —04-0-1
As—] gg o 1;

11
YY%‘YY

Fig. 10.37 Interfacing 8 x 4 keyboard matrix in decoded scan keyboard mode
Main program

MOV AL, O00H
OUT 82H, AL ; Initialize keyboard/display in encoded
; scan keyboard 2 key lockout mode
MOV AL, 34H
OUT 82H, AL ; Initialize prescaler count
HERE : JMP HERE ; Wait for the interrupt

Interrupt subroutine

MOV AL, 40H
OUT 82H, AL
IN AL, 80H
RET

Program 32 : Hardware and software to interface eight 7-segment digits using
8279

Program statement : Interface 8/7-segment digits (common cathode) to 8086 through
8279 and write an 8086 assembly language program to display 1 to 8 on the eight seven
segment digits. External clock frequency is 3 MHz.

Initialize 8279 in read FIFO
RAM mode

Read FIFO RAM (keycode)
Return to main program

Ne we we N

Solution : Fig. 10.38 (see Fig. 10.38 on next page) shows the interfacing of eight
7-segment digits to 8086 through 8279.

As shown in the Fig. 10.38, eight display lines (B;- B; and A -A ;) are buffered with
the help of transistor and used to drive display digits. These buffered lines are connected
in parallel to all display digits. Sy, S; and S, lines are decoded and decoded lines are
used for selection of one of the eight digits.

Keyboard and Display Interfacing

Fig. 10.38

Microprocessor 10 - 46 Keyboard and Display Interfacing

Software : To display 1 to 8 numbers on the eight 7-segment digits we have to load
7-segment codes for 1 to 8 numbers in the corresponding display locations.

Number h 9 f e d c b a Code
1 0 0 0 0 0 1 1 0 06
2 0 1 0 1 1 0 1 1 5B
3 0 1 0 0 1 1 1 1 4F
4 0 1 1 0 0 1 1 0 66
5 0 1 1 0 1 1 0 1 6D
6 0 1 1 1 1 1 0 1 70
7 0 0 0 0 0 1 1 1 07
8 0 1 1 1 1 1 1 1 7F

Table 10.7 7-Segment codes for common cathode display
Step 1 : Find keyboard/display command word. To interface 8 digit 7-segment display
we need 8/8-bit character display mode with left entry. For selection of 8 digits we need
encoded scan mode. Therefore, the keyboard/display command word is as given below.
D D K K K

0 0 0 o ! o 0 0 o | =ooH

Step 2 : Find program clock command word. External clock frequency is 3 MHz.

3MHz
Prescaler value = 100N~ 30 = (11110),
Therefore, the program clock command word is as given below.
P P P P P
0 0 1 1 1 1 1 0 = 3EH

Step 3 : Find write display RAM command word. We want to write first eight locations
of display RAM with corresponding 7-segment codes. So we start from first location with
autoincrement mode by command word given below.

Al Ay A, A Ao
1 0 0 1 0 0 0 0 | =90H

Microprocessor

10 - 47 Keyboard and Display Interfacing

Flowchart :

Program :

BACK

Start

Initialize lookup table
pointer and counter

!

Initialize keyboard /
Display mode of 8279

Iﬁiﬁalize prescaler count]

Initialize 8279 in display
RAM write mode

——

I Get 7 segment codrl

!

Write 7 segment code
in the display RAM

:

Increment lookup table
pointer

L Decrement counter —]

Is

No
& counter =
?

Fig. 10.39

MOV SI, LOOK_UP_TABLE ; Initialize lookup table pointer

MOVCL, O08H

MOV AL, O0OH
OUT 82H, AL
MOV, AL, 3EH
OUT 82H, AL
MOV, AL, 90H
OUT 82H, AL
MOV AL, [SI]
OUT 80H, AL

; Initialize counter

; Initialize keyboard/display
Mode

; Initialize prescaler count

~

Initialize 8279 in write Display
; RAM mode

; Get the 7-segment code

Write 7-segment code in display
; RAM

~e

~

Microprocessor 10-48 Keyboard and Display Interfacing

INC SI : Increment lookup table pointer
DCR CL ; Decrement counter

JNZ BACK ; if count = 0 stop otherwise go
; to back

LOOK_UP-TABLE dB 66H, 5BH, 4FH, 66H, 6DH, 7DH, 07H, 7FH

[
—

© % N S kR W

[—
N =S

[y
b

Review Questions
1.

What do you mean by static display and multiplexed display ? Draw the circuit arrangement for
interfacing 4 digit multiplexed display to 8086 with the help of 8255.

What is disadvantage of software approach used for interfacing keyboard and display ?
List the features of 8279.

Draw the functional pin diagram of 8279 and explain the function of different pins.
Draw and explain the internal block diagram of 8279.

What do you mean by encoded scan and decoded scan ?

Explain the input modes provided by 8279.

Explain the terms 2-key lockout and N-key rollover.

Why maximum size of keyboard matrix is 8 x8 = 64, when interfaced with 8279?
Explain the display modes provided by 8279.

. Interface a 4 x 4 matrix keyboard to the microprocessor using 8279 IC. Discuss the operation.

Interface 4 x 4 matrix keyboard and 6 displays to the 8086 system using 8279 IC. Wiite
initialisation program for encoded key scan and left entry for display.

Interface a 16 keys keyboard and four 7-segment LED’s to 8086 using 8279. Write a program to
read the keyboard and store the key read in the location KEYBUF.

Qaa

8086/8088 Based
Multiprocessing Systems

11.1 Introduction

If a microprocessor system contains two or more components that can execute
instructions independently, then the system is called multiprocessor system.
Multiprocessor system uses a distributed approach. Here, more than one processors are
used to do the subtasks instead of doing entired task by a single processor. This system
has following advantages :

1. Improves cost/performance ratio of the system.

2. Several processors may be combined to fit the needs of an application while
avoiding the expense of the unneeded capabilities of a centralized system. Yet this
system provides room for expansion.

3. Tasks are divided among the modules. If failure occurs, it is easier and cheaper to
find and replace the malfunctioning processor than replacing the failing part of
complex processor.

Thus we can say that, multiprocessor systems aim to improve throughput, reliability,
flexibility and availability. The Fig. 11.1 shows typical multiprocessor organization. It
consists of two or more processors of approximately comparable capabilities. All processor
share access to common sets of memory modules, input-output channels, and peripheral
devices. Along with shared memory and input-output devices, each processor has its own
local memory and input-output devices. The interprocessor communication is done
through the shared memories or through an interrupt network. Most importantly, the
entire system is controlled by the single operating system providing interactions between
processors and their programs at various levels.

The multiprocessor systems are implemented using one of the two basic architectures :
loosely coupled architecture and closely coupled architecture. The systems using these
architectures are known as loosely coupled systems and closely coupled systems
respectively.

(11 - 1)

Microprocessor 11-2 8086/8088 Based Multiprocessing Systems

MM : Memory module
P LM : Local memory
P : Processor

Interprocessor P
interrupt 2
network | M, I

MM,
Interprocessc~mamery
connection network) ltnput-outptgt MM,
(common buses, crossbar, n ercotcvne,g fon
or multiport) netwo
MM,
I 1 H Shared
‘ memory
IO channels

Fig. 11.1 Function design of typical multiprocessor system

11.2 Closely Coupled System using 8086

The Fig. 11.2 shows the simplest from of closely coupled configuration. In this
configuration, the CPU (8086) is the master or host and the supporting processor is the
slave. Therefore, two 8086s cannot appear in this configuration. The CPU provides the bus
control logic. So the bus request signal from the supporting processor is connected to the
CPU.

Microprocessor

11-3 8086/8088 Based Multiprocessing Systems

——N soscis08s G
Bus
Clock :> control < System bus >
logic
Coprocessor
N or
—/ Independent Cl
processor Memory /0

Fig. 11.2 Closely coupled configuration

Fig. 11.3 shows the interaction between CPU and independent processor in closely
coupled configuration.

Independent
8086/8088 processor

Set up

Wait for
message

I request
Wake up -~
independent Fetch
processor with an message
OUT instruction
Execute
the 8086's Perform
program sequence assigned task

Wait for
ready or
interrupt request

Notify CPU
of completion

Fig. 11.3 Interaction between CPU and independent processor

In a closely coupled system no special instruction such as WAIT or ESC is used. Here
the communication between host and independent processor is done through memory
space. As shown in the Fig. 11.3, the host sets up a message in memory and wakes up

Microprocessor 11 -4 8086/8088 Based Multiprocessing Systems

independent processor by sending command to one of its ports. The independent processor
then accesses the memory to execute the task in parallel with the host. When task is
completed, the external processor informs the host processor about the completion of task
by using either a status bit or an interrupt request.

11.3 Loosely Coupled System using 8086

Fig. 114 shows the loosely coupled configuration. It consists of different modules.
Each module may consists of an 8086, an another processor capable of being a bus master,

Local <
/0 Local
devices memory
< Local bus / c::t?ol
logic
System
Processor
Ciock [(8086/ o KD
8088) fogic
Local
1o m:",ﬁf,'w <:> System
devices memory
ﬁ @ N Local 1
32
< Local bus ‘/‘ a?::ol 2
logic .g
|
12
Processor Sﬁi‘:m
Cock [T (8086l o K=
plus logic
8087)
ngal Local
devices memory
System
Local = I
vices
< Local bus > o::tfol
logic
System
Closely bus <:>
coupled control
multiprocessor logic
module {/

Fig. 11.4 Loosely coupled configuration

Microprocessor - 11-5 8086/8088 Based Multiprocessing Systems

or a coprocessor or closely coupled configuration. Normally each processor has its own
local memory and I/O devices, to which other processors do not have direct access. But
they can share system resources.

Advantages of Loosely Coupled System

1. Better system throughput by having more than one processor.

2. Each processor may have a local bus to access local memory or I/O devices so that
a greater degree of parallel processing can be achieved.

3. System structure is more flexible. As the system consists of different modules, one
can easily add or remove modules to change the system configuration ; without
affecting the other modules in the system.

4. A failure in one module normally does not cause a breakdown of the entire
system. The faulty module can be detected and replaced.

11.4 The 8087 Numeric Data Processor

As mentioned earlier, multiprocessor system consists of processors and coprocessors.
The numeric processor 8087 is a coprocessor which has been specially designed to work
under the control of the processor 8086 and to support additional numeric processing
capabilities.

11.4.1 Features of 8087

1. It can operate on data of the integer, decimal, and real types, with lengths ranging
from 2 to 10 bytes.

2. Its instruction set not only includes various forms of addition and subtraction, but
also provides many useful functions such as square root, exponential, tangent, and
50 on.

3. It is high performance numeric data processor. It can multiply two 64-bit real
numbers in about 27 us and calculate square root in about 36 ps.

4. It follows IEEE floating point standard.
5. It is multibus compatible.

11.4.2 Pin Diagram of 8087

Fig. 11.5 shows pin diagram of 8087. The address/data, status, ready, reset, clock,
power and ground pins of the NDP are similar to the 8086 pins. Among the remaining 8
pins, four are not used. The other pins are as follows :

Microprocessor 11-6 8086/8088 Based Muitiprocessing Systems
el V. vee 1. BUSY : BUSY __sl_gnal from the 8087 is
ata14 O 2 »[Jaisois connected to the TEST input of the 8086. If the
313 O 3 ssJawss 8086 needs the result of some computation that
I;:?,DleE ; 2; a:z;:: the 8087 is doing before it can execute next
atom10 T 6 35 (] A19/56 instruction in the program, user can tell 8086
:jﬁE ; ;g—;‘%ﬁg} with a WAIT instruction to keep looking at its
a7 o 32 L INT TEST pin until it finds the pin low. A low on the
::g:E 11,0 :%8; ;ESSIGTU 8087 BUSY output indicates that the 8087 has
aps] 12 29 JNe completed the computation.
A3D3] 13 28f]s2
':’,ng o . gi_z 2. RQ/GT,: This request / grant signal from
aomo [16 253 aso the 8087 is usually connected to the request
:gE " - ggﬁ;v /grant (RQ / GT, or RQ / GT;) pin of the 8086.
5;2 E 12% zf gﬁigg 3.RQ/ Ef., : This request/grant signal is

NC = NO CONNECT

Fig. 11.5 Pin diagram of NDP 8087

connected to the request/grant pin of the
independent processor such as 8089.

4. INT : The interrupt pin is connected to the

interrupt management logic. The 8087 can interrupt. the 8086 through this interrupt
management logic at the time, error condition exists.

5. S, - S, : These are the status bits of 8087 which are encoded as follows :

§2 §1 §0 Status

X Unused

1 0 Unused
1 0 1 Read memory
1 1 0 Write memory

1 1 1 Passive

6. QS - QS : These signals give the queue status as follows :

Qs, Qs Operation
0 1 No operation
0 1 First byte of opcode from Queue
1 0 Queue empty

Subsequent byte from the queue

Microprocessor 11 -7 8086/8088 Based Multiprocessing Systems

11.4.3 Circuit Connection for 8087

Fig. 11.6 shows the circuit connection for 8087 with 8086. First note that the MN/MX
pin of the 8086 is grounded, so the 8086 is operating in its maximum mode. Remember
that in maximum mode the 8086 sends encoded control signals on the status lines Sz Sl,
and So and the queue status lines QS; and QS instead of generating the-control signals
directly. As shown in the Fig. 11.6, in maximum mode system an external controller such
as the 8288 decodes these status signals to produce the control signals. These status signals
also go directly from the 8086 to the 8087.

J—|D|—|
LK CLK MN/MX —1 8288
bus
8284A 8086 — controller | Control
Clock 52-50
generator READY
, AD15-ADO DEN bus
RESET DTR
— A19-A16 ALE
RQ/GT
Reset BHE 1
TEST QS1-QS0 INTR {ST8 OE | =
Ready Address
U 8282 :{)
Busy Queue status LATCHES
Bus request/grant)
Coprocessor T
(suchas P e —
8087 Ot
) Address/ A 8286 C:‘J>
Ready data | Transceivers] Data
Clock @ bus
Interrupt
Reset request
8259A
p
Progra- \,___:]
mmable)
interrupt iR lines
controller
INT

Fig. 11.6 Interconnection of 8086 and 8087

The upper address lines Aj¢-A;g are also connected directly from 8086 to the 8087.
The 8087 receives the same clock and reset signals. The bus request/grant signal from 8087
is connected to RQO/GTO or RQI / GTl signal of the 8086. The Busy signal from 8087 is
connected to the TEST input of the 8086. If the 8086 must have result of some computation
that the 8087 is doing before it can execute its further instructions, we tell the 8086 with a
WAIT instruction to keep looking at its TEST pin until it finds the pin low. A low on the
TEST pin, i.e. on the BUSY output indicates that the 8087 has completed the computation.

Microprocessor 11 -8 8086/8088 Based Multiprocessing Systems

11.4.4 Interaction between 8086 and 8087

The 8087 is an actual processor. It has its own specialized instruction set. Instructions
for 8087 are inserted in the 8086 program as needed. Both 8086 and 8087 execute their
instructions from the same program. As the 8086 fetches instruction bytes from memory
and puts them in its internal queue, the 8087 also reads these instruction bytes and puts
them in its internal queue. The 8087 decodes each instruction that comes into its queue.
When it decodes an instruction from its queue and finds that it is an 8086 instruction, the
8087 simply treats the instruction as a NOP. Likewise, when 8086 decodes an instruction
from its queue and finds that it is an 8087 instruction, the 8086 simply treats the
instruction as a NOP, or in some cases reads one additional word from memory for 8087.
Here, it is important to note that each processor deccdes all of the instructions in the
fetched instruction byte stream, but only executes its own instructions. The 8086 and 8087
instructions are differentiated by code 11011. The 8087 instruction code have 11011 as the
most significant bits of their first code byte.

An instruction to be executed by 8087 is indicated when an ESC instruction appears in
the program. The 8087 can keep a track for ESC instruction by monitoring the host 8086 §2
to Sy and ADy-AD;5 of 8086. The 8087 must track the instruction by monitoring the Q
status QSy-QS;. If the Q status is 00, 8087 does nothing. If it is 01 it compares the five MSB
bits with 11011. If there is a match, then an ESC instruction is fetched and executed by
both, and 8087 will perform the indicated operation; otherwise, this byte is ignored and

8086/8088 Coprocessor deleted from the queue. If an
error occurs at the time of
, decoding an ESC instruction,
Monitor the
8087 sends an interrupt request.
Deactivate the

When 8086 reads an 8087
instruction that needs data from

Execute ' sen
host's TEST pin and em or wants to d
|n|2e 80@(‘)‘8 execute the specified m Ol'y an ¢ data

operation to memory, the 8086 sends the
memory address coded in the
instrucion and sends the
WAIT e ORI - appropriate memory-read or
------- memory-write signals to transfer

a word of data. In case of a
Fig- 11.7 Interaction between CPU and COP memory_read, memory put the
addressed data on the data bus.

The 8087 then simply reads this word of the data bus and executes its instruction. The
8086 ignores the data word. Many times 8087 needs more than one word. In such
situations, the 8086 outputs the address of the first data word on the address bus and
outputs the appropriate memory-read or memory-write control signal. The 8087 reads the
data word put on the data bus by memory or writes a data word to memory on the data
bus. The 8087 then grabs the 20-bit physical address that was send by the 8086. To transfer
the additional words, the 8087 then takes over the buses from the 8086. To take over

Microprocessor 11-9 8086/8088 Based Muitiprocessing Systems

the bus the 8087 sends a low-going pulse on its RQ/GT, pin. The 8086 responds to this
by sending another low going pulse back to the RQ/GT, pin of the 8087 and by floating
its buses. The 8087 then increments the address it grabbed during the first transfer and
outputs the incremented address on the address bus. When the 8087 outputs a
memory-read or memory-write signal, another data word will be transferred to or from the
8087. The 8087 continues this process until it receives/sends all the data words required by
the instruction to or from memory. When 8087 finishes its data transfer, it sends another
low-going pulse on RQ/GTj; pin to let the 8086 know it can have the buses back again.

While the 8087 is executing an instruction it asserts BUSY pin high. When it completes
its instruction it drops its BUSY pin low. Since the BUSY pin from 8087 is connected to the
TEST pin of the 8086, the 8086 can check this pin to see if 8087 has executed its
instruction. The 8086 checks TEST pin with the help of WAIT instruction.

11.4.5 The 8087 Architecture

The internal architecture of 8087 is as shown in Fig. 11.8.

BV

I

Vee Vss
8-register stach, each register has 80 bits rET;gmr _—_1.—
79 0 0
TAG(0)
TAG(1)
TAG(2)
TAG(3)
TAG(4)
—] CK TAG(5)
-— INT TAG(6)
) #0540, TAG(T)
15
Floating-point
Floatin
< hass Busacung | 15 0
- o ez [T~ [P o [o []
~—*1 BHE/S7 an instruction -
N queue Status register
<:> S2-S0 X : reserved
= 3R B N I R D
o Control register
<] RQIGTO _ 4
-~ raEE | 16 LSBs of instruction address | st
18" famcion —] 0] 11 LSBs of op code ot
———] READY dd
—{ RESET | 16 LSBs of operand address |
pointer
4 MSBs of
operand —of | 0]
address

Fig. 11.8 Block diagram of 8087

Microprocessor 11 -10 8086/8088 Based Multiprocessing Systems

11.4.5.1 Instruction Queue

It mairtains a 6 byte instruction queue and tracks a execution sequence of the host. If
the curre: - host instruction is an ESC instruction, the 8087 decodes the external opcode to
perform the specified operation and captures the operand address. The other instructions
are ignored by 8u87.

11.4.5.7 oata Registers

It has 8 data registers. Each register is 80-bit and it is accessed as a stack. An operand
may be pushed or popped from top of stack. A ‘push’ operation decrements TOP of stack
by 1 and loads a value into the new top register. A ‘pop’ operation stores the value from
the current top register and then increments TOP by 1. The top stack element is pointed
by ST bits, i.e., bits 13,12 and 11 of the status register.

11.4.5.3 Status Registers

The status register is 16-bit register. It reflects the overall state of the 8087. It indicates
various errors, stores condition code for certain instructions, specifies which register is top
of the stack and indicates the BUSY status. Fig. 11.9 shows the bit definitions of the Status
Register.

Error Flags
IE : An invalid operation such as stack overflow, stack underflow,
invalid operand, square root of a negative number etc.
DE : The operand is not normalized.
ZE : A divide by zero error.
OE : An exponent overflow error, i.e., the biased exponent is too small.
PE : A precision error, i.e., the result cannot be represented in the

designated format and hence is rounded off.

Interrupt Flag
IR : Indicates the existence of the interrupt request.
1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

Islcal st |c2|cifco|ir| [Pe|uE]oe|ze|pE]iE]
‘—ﬂr—’\—%r‘—’

Exception Flag
(1=exception Has Occurred)

Invalid Operation

Denormalized Operand

Zerodivide
t————— Overflow

e Underflow

Precision

(reserved)

Interrupt Request

Conditi ST values :
Sta?:l(' ;")o r; (I:’Z?rier 000 = register 0 is stack top

001 = register 1 is stack to
Conditional Code 9 P

Busy 111 = register 7 is stack top

Fig. 11.9 Bit pattern of status register

Microprocessor 14~ 11 8086/8088 Based Multiprocessing Systems

Condition Code

Cp - G; indicate the condition code. The condition code is set by the compare and
examine instructions, which are discussed later.

Stack Bits
ST: §0 - §2 indicate the top of stack.
Busy Status
B : Indicates current operation is not completed.

NOTE : After the 8087 is reset or initialized, all status bits except the condition code are
cleared.

11.4.5.4 Control Register

The control register is also 16-bit. The 8087 provides several processing options which
are selected by loading a word from memory into the control register. The control register
gives the facility to mask each error type individually from causing an interrupt. It can be
used to set precision levels, rounding type and infinity representation. Fig. 11.10 shows the
bit definition of control register.

15141312 1110 9 8 7 6 5 4 3 2 1 0

L. o] Re | Po Jen] [emumonzviomiv] B ey

Y Y INVALID OPERATION
DENORMALIZED OPERAND
ZERODIVIDE
OVERFLOW
UNDERFLOW
PRECISION
(RESERVED)
INTERRUPT-ENABLE MASK'")
PRECISION CONTROL?
ROUNDING CONTROL®
INFINITY CONTROL®
(RESERVED)
(1) Interrupt - Enable Mask (3) Rounding Control
0 = Interrupts Enable 00 = Round to Nearest or Even
1 = Interrupts Disabled (Masked) 01 = Round Down (toward %)
(2) Precision Control 10 = Round Up (toward %)

00 = 24 bits 11 = Chop (Truncate Toward Zero)

01 = (reserved) (4) Infinity Control

10 = 53 bits 0 = Projective

11 = 64 bits 1 = Affine

DEFAULT AFTER FINITE

Fig. 11.10 Bit pattern of control register

Microprocessor 11 -12 8086/8088 Based Multiprocessing Systems

The low order byte of this control register configures 8087 interrupts and exception
masking. Bits 5-0 of the control register contain individuals masks for each of the six
exceptions that the 8087 recognizes and bit 7 contains a general mask bit for all 8087
interrupts. The high order byte of the control register configures the 8087 operating mode
including precisiun, rounding, and infinity controls.

Afier reset or initialization of the 8087, these bits are PC = 11, RC = 00, IC = 0,
T4 = 0 and all error mask bits are 1.

Tag Register : TAG register holds the status of the contents of data register. This
includes

0 0 - Data Valid

01 - Zero

1 0 - A special value ie. NAN (Not A Number), infinity or denormal.
11 - Empty

11.4.6 Data Formats and Conversions
The 8087 can operate on memory operands of seven different data types :

e Word integer

e Short integer

¢ Long integer

e Packed BCD

e Short real

e Long real

¢ Temporary real

Fig. 11.11 shows the number of bytes, format, and approximate range for each of these
data types. In memory, the least significant byte of a number is always stored at the
lowest address. The signed integer numbers or BCD numbers are referred to as fixed point
numbers because they don’t have any information about decimal point in the number. The
decimal point is always assumed to be to the right of the least significant digit, so all
numbers represented in this form are whole numbers with no fractional part. To represent
fractional numbers in this format, programmer has to keep a track of decimal point. But it
is possible to represent number in the format which has the integer part and the fractional
part. This format automatically keeps a track of the position of decimal number. The
number represented in such formats are called as real numbers or floating point numbers.

Microprocessor 11 -13 8086/8088 Based Multiprocessing Systems

Approximate _
Datatype Bytes Range (decimal) Format
Wordinteger 2 32,768 to 32,767 Is| magnitude |
15 0
, 9 9
Shortinteger 4 =-2x10 to2x10 |S| Magnitude I
31 0
, 18 18
Longinteger 8 =-9x10 to9x10 IS[Magnitude I
63 0
18 18
PackedBCD 10 -10 +1t010 -1 |s| o |p,[p,] | [[D,] D,
7978 72 0
-38 38
Short real 4 =+1x10 to+3x10 [s] E | F |
3130 2322 0
308 308
Long real 8 =+10 to£10 is] e | F]
63 62 52 51 0
4932 4932
Temporaryreal 10 =+10 to+10 Is] E | F |
79 78 64 63 0

Fig. 11.11 Data formats of NDP 8087

A real format is divided into three fields :

1. Sign

2. Exponent
3. Mantissa.

Real number n = sign 2°*P x mantissa.

To convert any number to real format, we have to move the decimal point to the right
of the most significant, nonzero digit. Then it is necessary to multiply number with base
N. N represents the number of digits moved to adjust decimal point. This process of
moving the decimal point to the right of the most significant, nonzero digit is referred to
as Normalization.

The 8087 recognizes three real data types :
e Short real (32-bit)
¢ Long real (64-bit)
¢ Temporary real (80-bits)
As mentioned earlier real format has field : sign, exponent and mantissa.

Microprocessor 11 - 14 8086/8088 Based Multiprocessing Systems

In 8087 bias value is added to the true exponent. This solves the problem of
representation of negative exponent and hence the magnitude of two numbers can be
compared without having to do arithmetic on the exponents first. The sign bit is ‘0" for
positive numbers and ‘1’ for negative numbers. To make this clear, we will see few
examples :

mmp Example 11.1 : Convert 1259125, into short real, long real and temporary real format.

Solution : Step 1 : Convert this decimal number to binary format.
Integer part :

Remainders

16 1259 B LSB

16 78 E
4 4
msB

_ (100 1110 1011),

4EB, i E B
Fractional part :
125%x2 =025 0
0.25%x 2 = .5 0
05 x2 =10 1
0
= .001

Binary number = 1001110101: + .001 = 10011101011.001
Step 2 : Normalize the number.
10011101011.001 = 1.0011101011001 x 21°
Now we will see the representation of the number in different formats.
1. Short real
For the given number
S = 0, E=10, F=0011101011001

Bias for the short real format = 127

Microprocessor 11-15 8086/8088 Based Multiprocessing Systems

Biased exponent = 10 + 127 = 137 = 10001001
Number in the short real format
0 10001001 0011101011001 ... 0 =1259125,,
S Exponent Fraction
2. Long real
Bias for long real format = 1023
Biased exponent = 10 + 1023 = 1033 = 10000001001
Number in long real format
0 10000001001 0011101011001 ...0 = 1259125,
S Exponent Fraction
3. Temporary real format

Bias for temporary real format = 16383
Biased exponent = 10 + 16383 = 16393 = 100 0000 0000 1001
Number in temporary real format
0 100 0000 0000 1001 001110101001 ... 0 = 1259125,
S Exponent Fraction

nmp Example 11.2 : Convert - 307.1875,, into short real, long real and temporary real
format.

Solution : Step 1 : Convert decimal number in binary format.
Integer part : Convert this decimal number to binary format.
Remainders

16 307 3 LSB

Microprocessor 11 - 16 8086/8088 Based Multiprocessing Systems

Fractional part :

1.1875 x 2 = 03750 0
375 x 2 = 0750 0O
750 x 2 =15 1
.5 x 2 =10 1
= .0011
Binary number = - 100110011 + .0011
= -100110011.0011

Step 2 : Normalize the number.

- 100110011.0011 - 1.001100110011 x 28

Now we will see the representation of the number in different formats.

1. Short real
For the given number
S =1 E=8 F =001100110011
Bias for short real format = 127
Biased exponent = 8 + 127 = 135 = 10000111

Number in short real format
1 10000111 0011001100119 ...0 = ~ 307.1875,,
S Exponent Fraction
2. Long real
Bias for long real format = 1023

Biased exponent = 8 + 1023 = 1031 = 10000000111

Number in long real format
1 10000000111 0011001100110 ... 0 = - 307.1875,

S Exponent Fraction

3. Temporary real

Bias for temporary real format = 16383

Microprocessor 11 -17 8086/8088 Based Multiprocessing Systems

Biased exponent = 8 + 16383 = 16391 = 100000000000111
Number in temporary real format
1 100000000000111 0011001100110 ...0 = - 307.1875,,
S Exponent Fraction

iy Example 11.3 : Convert 00625, into short real, long real and temporary real format.

Solution : Step 1: Convert this decimal number to binary format.
Integer part : 0
Fractional part :

0.0625 x = 2 0125 0

0.125 x = 2 025 0

0.25 x =2 05 0

0.5 x =210 1
= 0.0001

Binary number = 0 + .0001 = 0.0001
Step 2 : Normalize the number.
0.0001 = 1.0x107*
Now we will see the representation of the number in different formats.

1. Short real

For the given number
$=0 E=-4 F = 0000
Bias for the short real number = 127
Biased Exponent = -4+ 127 = 123 = 01111011

Number in the short real format
0 01111011 00000 ...0 = 0.0625 10
S Exponent Fraction
2. Long real
Bias for the long real format = 1023
Biased Exponent = - 4 + 1023 = 1019 = 01111111011

Number in the long real format
0 01111111011 0000 ... 0 = 0.00625 1
S Exponent Fraction
3. Temporary real

Bias for the temporary real format = 16383
Biased exponent = — 4 + 16383 = 16379 = 011111111111011

Microprocessor 11 - 18 8086/8088 Based Multiprocessing Systems

Number in the temporary real format

NOTE :

11.4.7

0 011111111111011 0000...0

S Exponent Fraction

. A biased exponent with all 1’s is reserved to represent infinity (Ir “not-a-number”

(NAN). At the other extreme, a biased exponent with all 0's is reserved to
represent + 0 (all Os with a sign bit 0).

- 0 (all 0s with a sign bit 1), is a denormal. A denormal is a result that causes an
underflow and has leading Os in the mantissa even after the exponent is adjusted
to its smallest possible value. NANs and denormals are usually used to indicate
overflows and underflows, respectively.

The 8087 works internally with all numbers in the 80-bit temporary real format. (1
bit for sign, 15-bits for exponent and 64-bits for the mantissa). The temporary real
format is used to reduce the chances for overflows and underflows during a series
of calculations which produce a final result within the desired range.

Stacks in 8087

The 8087 has a 3-bit stack pointer which holds the number of the register which is the

current

top-of-stack. When the 8087 is initialized, the 3-bit stack pointer in the 8087 is

loaded with 000, that indicates register 0 is a top of stack.

As shown in Fig. 11.12, the stack of 8087 is circular. So if you decrement 000 you get
111. When 8087 reads the first number, stack is decremented to 111(7) and the number is
stored in register number 111(7). Now register 7 is the top of stack.

REGISTER
Y NUMBER
X 111 ST(2)
X 110 ST(1)
X 101 «+—TOS ST(0)
100 ST(7)
011 ST(6)
010 ST(5)
001 ST(4)
000 ST(3)
L_/ REGISTER

4 \ NUMBER

111 <«+——— ST(0) AFTER

110 FIRST PUSH
REG 00C NOW

101 ST(1)

100

011

010

001

000 <——— ST(0)

\] AFTER RESET

Fig. 11.12 Register stack in 8087

Microprocessor 11 -19 8086/8088 Based Multiprocess.ng Systems

In the 8087 instructions, the register that is currently top of stack is referred to as
ST(0), or simply ST and register next to it is referred to as ST(1). The register ‘next to it’
means the stack pointer will point that register if we pop one number from stack.

11.4.8 Instructions of 8087

The 8087 instructions can be distinguished from 8086 instructions by letter F which
stands for floating point number. All mnemonics in 8087 begins with letter F. In all 8087
has 68 instructions, which can be divided into six groups.

e Data transfer instructions

e Arithmetic instructions

e Compare instructions

e Transcendental instructions
e Load constant instructions

e Processor control instructions

11.4.8.1 Data Transfer Instructions

a) Real Transfers

FLD source : Decrements the stack pointer by one and copies a real number from a
stack element or memory location to the new ST. A short-real or

long-real number from memory is automatically converted to temporary
real format by the 8087 before it is put in ST.

Exceptions : I, D.
Examples :
FLD ST(2) ; Copies ST(2) to ST
FLD [BX] ; Number from memory pointed by BX copied to ST
FST destination : Copies ST to a specified stack position or to a specified memory
location.
Exceptions : I, O, U, P.
Examples :
FST ST(3) ; Copy ST to ST(3)
FST [BX] ; Copy ST to memory pointed by [BX]
FSTP destination : Copies ST to a specified stack element or memory location and

increments the stack pointer by one to point to the next element
on the stack. This is a stack POP operation.

Microprocessor 11 - 20 8086/8088 Based Multiprocessing Systems

FXCH destination : Exchanges the contents of ST with the contents of a specified
stack element. If no destination is specified, then ST(1) is used.
Exception : L.
Example :
FXCH ST(4) ; Swap ST and ST(4)

b) Integer Transfers
FILD source : Integer load. Converts integer number from memory to temporary-real
format and pushes converted number on 8087 stack.
Exception : L
Example :

FILD DWORD PTR [BX] ; Short integer from memory location pointed
; by [BX]

"FIST destination : Integer store. Converts number from ST to integer form, and
copies to memory.

Exceptions : I, P

Example :
FIST INT_NUM ; ST to memory locations named INT_NUM
FISTP destination : Integer store and pop. Similar to FIST except that stack pointer

is incremented after copy.

c) Packed Decimal Transfers

FBLD source : Packed decimal (BCD) load. Convert number from memory to
temporary-real format and push on top of 8087 stack.
Exception : L.
Example :

FBLD AMOUNT ; Ten byte BCD number from
; memory location AMOUNT to ST

FBSTP destination : BCD store in memory and pop 8087 stack. Pops temporary-real
from stack, converts to 10-byte BCD, and stores result to
memory.

Exception : L
Example :

FBSTP MONEY ; Contents from top of stack are converted to BCD,

; and stored in memory

Microprocessor 11 -21 8086/8088 Based Multiprocessing Systems

11.4.8.2 Arithmetic Instructions
a) Addition

FADD destination, source : Adds real number from specified source to real number
at specified destination. Source can be stack element or
memory location. Destination must be a stack element. If
no source or destination is specified, then ST is added to
ST(1) and the stack pointer is incremented so that the
result of the addition is at ST.

Exceptions : I, D, O, U, P.

Examples :
FADD ST(2), ST ; Add ST to ST(2), result in ST(2)
FADD ST, ST(5) ; Add ST(5) to ST, result in ST
FADD SUM ; Real number from memory + ST
FADD ; ST + ST(1), pop stack-result at ST

FADDP destination, source : Adds ST to specified stack element and increments stack
pointer by one.

Exceptions : I, D, O, U, P.
Example :

FADDP ST(2) ; Add ST(2) to ST.

; Increment stack pointer so ST(2) becomes ST.
FIADD source : Adds integer from memory to ST, stores the result in ST.

Exceptions : I, D, O, P.
Example :

FIADD CARS_SOLD ; Integer number from memory + ST

b) Subtraction

FSUB destination, source : Subtracts the real number at the specified source from
the real number at the specified destination and puts the
result in the specified destination.

Exceptions : I, D, O, U, P.

Examples :
FSUB ST(3), ST ; ST(3) « ST(2) - ST
FSUB DIFFERENCE ; ST « ST - real from memory
FSUB ; ST « (ST(1) - ST)

Microprocessor ‘ 11 -22 8086/8088 Based Muitiprocessing Systems

FSUBP destination, source : Subtracts ST from specified stack element and puts
result in specified stack element. Then increments stack
pointer by one.

Exceptions : [, D, O, U, P.

Examples :
FSUBP ST(2) ; ST(2) - ST . ST(1) becomes new ST.
FISUB source : Subtracts integer number stored in memory from ST and stores result

in ST.

Exceptions : I, D, O, P.

Example :

FISUB DIFFERENCE ; ST « ST - integer

; from memory

c) Reversed Subtraction
FSUBR destination, source
FSUBRP destination, source
FISUBR source

These instructions operate same as the FSUB instructions described above except that
these instructions subtract the contents of the specified destination from the contents of the
specified source and put the difference in the specified destination.

NOTE : Normal FSUB instruction subtracts source from destination.

d) Multiplication

FMUL destination, source : Multiply real number from source by real number from
specified destination, and put result in specified stack
element. Exceptions : I, D, O, U, P.

FMUL ST(2), ST ; Multiply ST(2) and ST, result in ST(2)
FMUL ST, ST(5) ; Multiply ST(5) to ST, result in ST

FMULP destination, source-Multiplies real number from specified source by real
number from specified destination, puts result in specified stack element, and increment
stack pointer by one. With no specified operands FMULP multiplies ST(1) by ST and pops
stack to leave result at ST.

Exceptions : I, D, O, U, P.
Example : FMULP ST(2) ; Multiply ST(2) to ST. Increment stack
; pointer so STI (1) becomes ST

Microprocessor 11 -23 8086/8088 Based Multiprocessing Systems

FIMUL source : Multiply integer from memory ST and put result in ST.
Exceptions : I, D, O, P.
Example :
FIMUL DWORD P1R [BX] ; integer number from memory pointed by BX x ST

; and result in ST

e) Division
FDIV destination, source : Divides destination real by source real, stores result in
destination.
Exceptions : I, D, Z, O, U, P.
Example :
FDIV ST(2), ST ; Divides ST by S1(2)
; stores result in ST

FDIVP destination, source : Same as FDIV, but also increments stack pointer by one

after DIV.
Exceptions : I, D, Z, O, U, P.
Example :
FDIV ST(2), ST ; Divides ST by ST(2), stores result in ST
; and increments stack pointer

FIDIV source : Divides ST by integer from memory, stores result in ST.
Exceptions : I, D, Z, O, U, P.

Example :
FIDIV PERCENTAGE ; ST « ST/integer number

f) Reversed Division
FDIVR destination, source
FDIVP destination, source
FIDIVR source

These three instructions are identical in format to the FDIV, FDIVP, and FIDIV
instructions above except that they divide the source operand by the destination operand
and put the result in the destination.

Microprocessor: 11 - 24 8086/8088 Based Multiprocessing Systems

g) Other Arithmetic Operations
FSQRT : Contents of ST are replaced with its square root.

Exceptions : I, D, P.
Example : FSQRT
FSCALE : Scales the number in ST by adding an integer value in ST(1) to the

exponent of the number in ST. Fast way of multiplying by integral powers
of two.

Exceptions : I, O, U.

FPREM : Partial remainder. The contents of ST(1) are subtracted from the contents of
ST over and over again until the contents of ST are smaller than the contents
of ST(1).

Exceptions : I, D, U.
Example : FPREM

FRNDINT : Round number in ST to an integer. The round-control (RC) bits in the
control word determine how the number will be rounded.

Exceptions : I, P.

FXTRACT : Separates the exponent and the significant parts of a temporary- real
number in ST. After the instruction executes, ST contains a
temporary-real representation of the significant of the number and ST (1)
contains a temporary-read representation of the exponent of the number.

Exception : L.

FABS : Replaces ST by its absolute value. Instruction simply makes sign positive.
Exception : 1.

FCHS : Complements the sign of the number in ST.
Exception : L.

11.4.8.3 Compare Instructions

Compares the contents of ST with contents of specified or default source. The source
may be another stack element or real number in memory. These compare instructions set
the condition code bits C3, C2, and CO0 of the status word shown in Table 11.1.

Microprocessor 11 -25 8086/8088 Based Multiprocessing Systems
Table (a) Table (c)

Order C3 Co (ST) C3 C2 C1 Co
(ST) > (SRC) 0 0 + Unnormal 0 0 0 ©
(ST) < (SRC) 0 1 + NAN 0 0 0 1
(ST) =(SRC) 1 0 — Unnormal 0 0 1 0
Not comparable 1 1 — NAN 0 0 1 1

+ Normal 0 1 0 0

+ oo 0 1 0 1

— Normal 0 1 1 0

~ o0 0 1 1 1

+0 1 0 0 ©

Table (b) Emety I

Order C3 Co Empty 1 0 1 1

(ST)>0.0 0 0 + Denormal 1 1 o o

(ST)<0.0 0 1 Empty 1 1 0 1

(ST)=0.0 1 0 ~ Denormal 1 1 1 0

Not comparable 1 1 Empty 1 1 1 1
Table 11.1

You can transfer the status word to memory with the 8087 FSTSW instruction and then
use 8086 instructions to determine the results of the comparison.

Different compare instructions

FCOM source : Compares ST with real number in another stack element or memory.

Exceptions : I, D.

Examples :

FCOM ; Compares ST with ST(1)
FCOM ST(4) ; Compares ST with ST(4)
FCOM VALUE ; Compares ST with real number

FCOMP source :

FCOMPP :

FICOM source :

FICOMP source :

FTST :

; from memory

Identical to FCOM except that the stack pointer is incremented by one
after the compare operation.

Compares ST with ST(1) and increments stack pointer by 2 after
compare.

Exceptions : I, D.

Compares ST to a short or long integer from memory.

Exceptions : I, D.

Identical to FICOM except stack pointer is incremented by one after
compare.

Compares ST with zero.

Microprocessor. . 11 -26 8086/8088 Based Multiprocessing Systems

Exceptions : I, D.

FXAM : Tests ST to see if it is zero, infinity, unnormalized, or empty. Sets bits C3, C,,
C, and CO0 to indicate result. Refer Table 11.1.

Exceptions . None.

11.4.8.4 1ranscendental (Trigonometric and Exponential) Instructions

FPTAN : Computes the values for a ratio of Y/X for an angle in ST. The angle
must be expressed in radians, and the angle must be in the range of
0 <angle<m/4.

NOTE : FPTAN does not work correctly for angles of exactly 0 and 14

Exceptions : [, P.

FPATAN : Computes the angle whose tangent is Y/X. The X value must be in ST,
and the Y value must be in ST(1). Also, X and Y must satisfy the
inequality 0 < Y < X < . The resulting angle expressed in radians
replaces Y in the stack. After the operation the stack pointer is
incremented so the result is then ST. Exceptions : U, P.

F2XM1 : Computes the function Y = 2% -1 for an X value in ST. The result, Y,
replaces X in ST. X must be in the range 0 <X <0.5
Exceptions : U, P.

FYL2X : Calculates Y times the log to the base 2 of X or Y(log,X). X must be in
the range of 0 < X < e and Y must be in the range — © <Y < + . X

must initially be in ST and Y must be in ST(1). The result replaces Y
and then the stack is popped so that the result is then at ST.

Exceptions : P
FYL2XP1 : Computes the function Y times the log to the base 2 of (X + 1) or
Y(log, (X + 1)). This instruction is almost identical to FYL2X except

that it gives more accurate results when computing the log of a
number very close to one.

11.4.8.5 Instructions which Load Constants
These instructions simply push the indicated constant onto the stack.

FLDZ - Push 0.0 onto stack
FLD1 - Push + 1.0 onto stack
FLDPI - Push the value of © onto stack

FLD2T - Push log of 10 to the base 2 onto stack (log,10)
FLDL2E - Push log of e to the base 2 onto stack (log,e)
FLDLG2 - Push log of 2 to the base 10 onto stack (log;,2)

